Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver.
نویسندگان
چکیده
Stearoyl-CoA desaturase (SCD) catalyzes the rate-limiting step in the biosynthesis of monounsaturated fatty acids. Mice with a targeted disruption of the SCD1 isoform have reduced body adiposity, increased energy expenditure, and up-regulated expression of several genes encoding enzymes of fatty acid beta-oxidation in liver. The mechanisms by which SCD deficiency leads to these metabolic changes are presently unknown. Here we show that the phosphorylation and activity of AMP-activated protein kinase (AMPK), a metabolic sensor that regulates lipid metabolism during increased energy expenditure is significantly increased (approximately 40%, P < 0.01) in liver of SCD1 knockout mice (SCD1-/-). In parallel with the activation of AMPK, the phosphorylation of acetyl-CoA carboxylase at Ser-79 was increased and enzymatic activity was decreased (approximately 35%, P < 0.001), resulting in decreased intracellular levels of malonyl-CoA (approximately 47%, P < 0.001). An SCD1 mutation also increased AMPK phosphorylation and activity and increased acetyl-CoA carboxylase phosphorylation in leptin-deficient ob/ob mice. Lower malonyl-CoA concentrations are known to derepress carnitine palmitoyltransferase 1 (CPT1). In SCD1-/- mice, CPT1 and CPT2 activities were significantly increased (in both cases approximately 60%, P < 0.001) thereby stimulating the oxidation of mitochondrial palmitoyl-CoA. Our results identify AMPK as a mediator of increased fatty acid oxidation in liver of SCD1-deficient mice.
منابع مشابه
Stearoyl-CoA desaturase-1 deficiency reduces ceramide synthesis by downregulating serine palmitoyltransferase and increasing -oxidation in skeletal muscle
Dobrzyn, Agnieszka, Pawel Dobrzyn, Seong-Ho Lee, Makoto Miyazaki, Paul Cohen, Esra Asilmaz, D. Grahame Hardie, Jeffrey M. Friedman, and James M. Ntambi. Stearoyl-CoA desaturase-1 deficiency reduces ceramide synthesis by downregulating serine palmitoyltransferase and increasing -oxidation in skeletal muscle. Am J Physiol Endocrinol Metab 288: E599–E607, 2005. First published November 23, 2004; d...
متن کاملThe role of the carnitine system in human metabolism.
Metabolism cycles daily between the fed and fasted states. The pathways of energy production are reversible and distinct. In the anabolic (fed) state, the liver stores glucose as glycogen, and fatty acid/triglyceride synthesis is active. In the catabolic (fasted) state, the liver becomes a glucose producer, lipogenesis is slowed, and fatty acid oxidation/ketogenesis is activated. The rate-limit...
متن کاملAn Evolutionary Relationship Between Stearoyl-CoA Desaturase (SCD) Protein Sequences Involved in Fatty Acid Metabolism
Background: Stearoyl-CoA desaturase (SCD) is a key enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids (MUFAs) in fat biosynthesis. Despite being crucial for interpreting SCDs’ roles across species, the evolutionary relationship of SCD proteins across species has yet to be elucidated. This study aims to present this evolutionary relationship based on amino aci...
متن کاملStearoyl-CoA desaturase-1 deficiency reduces ceramide synthesis by downregulating serine palmitoyltransferase and increasing beta-oxidation in skeletal muscle.
Stearoyl-CoA desaturase (SCD) has recently been shown to be a critical control point of lipid partitioning and body weight regulation. Lack of SCD1 function significantly increases insulin sensitivity in skeletal muscles and corrects the hypometabolic phenotype of leptin-deficient ob/ob mice, indicating the direct antilipotoxic action of SCD1 deficiency. The mechanism underlying the metabolic e...
متن کاملLack of stearoyl-CoA desaturase 1 upregulates basal thermogenesis but causes hypothermia in a cold environment.
Stearoyl-CoA desaturase (SCD) is a microsomal enzyme involved in the biosynthesis of oleate and palmitoleate. Mice with a targeted disruption of the SCD1 isoform (SCD1-/-) exhibit reduced adiposity and increased energy expenditure. To address whether the energy expenditure is attributable to increased thermogenesis, we investigated the effect of SCD1 deficiency on basal and cold-induced thermog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 17 شماره
صفحات -
تاریخ انتشار 2004